Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord.
نویسندگان
چکیده
Strategies for spinal cord injury repair are limited, in part, by poor drug delivery techniques. A novel drug delivery system (DDS) is being developed in our laboratory that can provide localized release of growth factors from an injectable gel. The gel must be fast-gelling, non-cell adhesive, degradable, and biocompatible as an injectable intrathecal DDS. A gel that meets these design criteria is a blend of hyaluronan and methylcellulose (HAMC). Unlike other injectable gels, HAMC is already at the gelation point prior to injection. It is injectable due to its shear-thinning property, and its gel strength increases with temperature. In vivo rat studies show that HAMC is biocompatible within the intrathecal space for 1 month, and may provide therapeutic benefit, in terms of behavior, as measured by the Basso, Beattie and Bresnahan (BBB) locomotor scale, and inflammation. These data suggest that HAMC is a promising gel for localized delivery of therapeutic agents to the injured spinal cord.
منابع مشابه
Poly(ethylene glycol) modification enhances penetration of fibroblast growth factor 2 to injured spinal cord tissue from an intrathecal delivery system.
There is no effective treatment for spinal cord injury and clinical drug delivery techniques are limited by the blood-spinal cord barrier. Our lab has developed an injectable drug delivery system consisting of a biopolymer blend of hyaluronan and methylcellulose (HAMC) that can sustain drug release for up to 24h in the intrathecal space. Fibroblast growth factor 2 (FGF2) has great potential for...
متن کاملIntrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury.
Major traumatic spinal cord injury (SCI) results in permanent paralysis below the site of injury. The effectiveness of systemically delivered pharmacological therapies against SCI can be limited by the blood-spinal cord barrier and side effects. Local drug delivery to the injured spinal cord can be achieved using a minimally invasive biopolymer matrix of hyaluronan and methylcellulose injected ...
متن کاملSustained delivery of bioactive neurotrophin-3 to the injured spinal cord.
Spinal cord injury is a debilitating condition that currently lacks effective clinical treatment. Neurotrophin-3 (NT-3) has been demonstrated in experimental animal models to induce axonal regeneration and functional improvements, yet its local delivery remains challenging. For ultimate clinical translation, a drug delivery system is required for localized, sustained, and minimally invasive rel...
متن کاملLocalized and sustained delivery of fibroblast growth factor-2 from a nanoparticle-hydrogel composite for treatment of spinal cord injury.
After traumatic spinal cord injury, grossly injured blood vessels leak blood and fluid into the parenchyma, leading to a large cystic cavity. Fibroblast growth factor-2 (FGF2) can reduce immediate vasoconstriction of vessels in the tissue surrounding the primary injury and promote angiogenesis. A localized delivery system would both achieve restricted delivery of FGF2 to the spinal cord and lim...
متن کاملSpinal cord blood flow and blood vessel permeability measured by dynamic computed tomography imaging in rats after localized delivery of fibroblast growth factor.
Following spinal cord injury, profound vascular changes lead to ischemia and hypoxia of spinal cord tissue. Since fibroblast growth factor 2 (FGF2) has angiogenic effects, its delivery to the injured spinal cord may attenuate the tissue damage associated with ischemia. To limit systemic mitogenic effects, FGF2 was delivered to the spinal cord via a gel of hyaluronan and methylcellulose (HAMC) i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 27 11 شماره
صفحات -
تاریخ انتشار 2006